hydrosolver

Dmytro Strelnikov

TUTORIAL:

1	Wor	king with compositions
	1.1	Defining a composition
	1.2	Loading and dumping compositions
	1.3	Operations on compositions
2	Wor	king with solutions
	2.1	Defining a solution
	2.2	Operations on solutions
	2.3	Correcting solutions
3	Opti	imizing solutions
		Using optimizer

WORKING WITH COMPOSITIONS

The simplest entity in hydrosolver is Composition. Compositions can be defined on the go or loaded from a file, added and scaled.

1.1 Defining a composition

The most straightforward way to define a compostion is using its constructor Composition(name, vector). The simplest composition which does not contain any of the nutrient elements of our interest would be Composition(name='Pure water').

The monopotassium phosphate can be defied as follows:

Here vector follows the structure of *composition.nutrients_stencil*. Let us check the result.

It is hard to not notice that this kind of definition is cumbersome and can be barely used by humans. Therefore class Composition contains an alternative constructor Composition.from_dict(), so the same result could be achieved in the following way:

1.2 Loading and dumping compositions

It makes sense to save frequently used composition into a database and further load it from there. Here is an example:

```
import yaml
with open('database.yaml', 'w') as database:
   database.write(yaml.dump(MKP.as_dict()))
```

Multiple compositions can be loaded at once from a file:

```
from hydrosolver.utils import load_file
compositions = load_file('compositions/pure.yaml')
```

1.3 Operations on compositions

Compositions can be added and scaled, i.e. multiplied by scalars. You will typically not need to add or subtract compositions, but consider the following use case for scaling:

WORKING WITH SOLUTIONS

A more advanced entity in hydrosolver is Solution. Solutions consist of a few compositions and can be constructed in different ways. Solutions can be added, scaled, extended and merged.

2.1 Defining a solution

To define a solution we must first define the compositions constituting it. Let us consider a simple example:

```
>>> from hydrosolver.composition import Composition
>>> from hydrosolver.solution import Solution
>>> water = Composition('Pure water')
>>> CN = Composition.from_dict(
        {'Calcium nitrate tetrahydrate':
            {'N (NO3-)': 0.1186, 'Ca': 0.1697}}
. . .
. . .
>>> solution_CN_10 = Solution(
        compositions=[CN, water],
        formulation=[0.1, 0.9],
>>> solution_CN_10
Composition
                                Amount in kg Amount in g
Calcium nitrate tetrahydrate
                                         0.1
                                                         100
                                         0.9
Pure water
                                                        900
Total:
                                                        1000
Composition: Resulting composition
Nutrient
              Ratio
                     Amount mg/kg
N (NO3-)
            0.01186
                              11860
Ca
            0.01697
                              16970
```

Here we just defined a 10% (by mass) aqueous solution of calcium nitrate tetrahydrate. It's total mass is given by solution_CN_10.mass and equals to 1 [kg]. However, if the solution to construct consists of multiple compositions, it becomes more difficult to adjust the mass of the water. For this purpose there is an alternative constructor Solution. dissolve():

```
>>> solution_CN_10 = Solution.dissolve(
... mass=1,
```

```
water=water,
       compositions_=[CN],
. . .
       formulation_=[0.1],
       )
>>> solution_CN_10
Composition
                            Amount in kg Amount in g
_____
Calcium nitrate tetrahydrate
                                    0.1
                                    0.9
Pure water
                                                 900
Total:
                                                1000
Composition: Resulting composition
Nutrient
            Ratio
                  Amount mg/kg
-----
          _____
N (NO3-)
          0.01186
                          11860
Ca
          0.01697
                          16970
```

As one can see, for dissolve we first pass the desired total mass of the solution, then the composition which will be used for aligning (typically the water) and the truncated lists of compositions and their amounts without the last element, which will be substituted with water. This way fits more for defining solutions consisting of many compositions:

```
>>> MS = Composition.from_dict(
        {'Magnesium sulfate heptahydrate':
            {'Mg': 0.0986, 'S': 0.1301}}
. . .
       )
>>> my_solution = Solution.dissolve(
       mass=1,
       water=water.
. . .
       compositions_=[CN, MS],
        formulation_=[0.002, 0.001],
       )
>>> my_solution
                                               Amount in g
Composition
                                 Amount in kg
Calcium nitrate tetrahydrate
                                         0.002
Magnesium sulfate heptahydrate
                                         0.001
                                                           1
Pure water
                                         0.997
                                                         997
Total:
                                         1
                                                         1000
Composition: Resulting composition
Nutrient
                         Amount mg/kg
                Ratio
N (NO3-)
           0.0002372
                                237.2
           9.86e-05
Mg
                                98.6
Ca
           0.0003394
                                339.4
S
           0.0001301
                               130.1
```

2.2 Operations on solutions

The available operations on solutions can be split into two cathegories.

2.2.1 Operations preserving compositions

Any solution can be multiplied by a scalar. Two solutions defined in the same basis (i.e. consisting of the same compositions listed in the same order) can be added (and hence subtracted):

```
>>> 100 * my_solution
Composition
                      Amount in kg Amount in g
Calcium nitrate tetrahydrate
                            0.2
                                       200
Magnesium sulfate heptahydrate
                            0.1
                                       100
                            99.7
Pure water
                                     99700
Total:
                            100
                                    100000
Composition: Resulting composition
Nutrient
         Ratio Amount mg/kg
-----
N (NO3-)
       0.0002372
                     237.2
Mg 9.86e-05
                     98.6
Ca
       0.0003394
                     339.4
        0.0001301
                     130.1
```

```
>>> solution_CN_20 = Solution.dissolve(1, water, [CN], [0.2])
>>> 5 * solution_CN_20 + 10 * solution_CN_20
Composition
                      Amount in ka
                                  Amount in g
______
Calcium nitrate tetrahydrate
                               3
                                        3000
Pure water
                               12
                                        12000
Total:
                               15
                                        15000
Composition: Resulting composition
Nutrient
        Ratio Amount mg/kg
_____
N (NO3-) 0.02372
                      23720
  0.03394
                      33940
```

Another operation preserving the compositions is align(). It adjusts the total mass of the solution to the specified value by changing the amount of the last composition (typically water):

```
Composition: Resulting composition

Nutrient Ratio Amount mg/kg
------
N (NO3-) 0.002372 2372
Ca 0.003394 3394
```

2.2.2 Operations extending compositions

An existing solution can be modified by adding another composition in the specified amount:

```
>>> MAP = Composition.from_dict(
{ 'Monoammonium phosphate':
          {'N (NH4+)': 0.12177, 'P': 0.26928}}
. . .
>>> my_solution.add(MAP, 0.001)
>>> my_solution
Composition
                            Amount in kg
                                         Amount in g
                           _____
                                   0.002
Calcium nitrate tetrahydrate
                                                   2
Magnesium sulfate heptahydrate
                                 0.001
                                                  1
Monoammonium phosphate
                                   0.001
                                                   1
                                   0.996
Pure water
                                                 996
Total:
                                   1
                                               1000
Composition: Resulting composition
Nutrient
              Ratio Amount mg/kg
_____
N (NO3-)
          0.0002372
                           237.2
N (NH4+) 0.00012177
                          121.77
P
         0.00026928
                         269.28
Mg
         9.86e-05
                           98.6
Ca
         0.0003394
                           339.4
        0.0001301
S
                         130.1
```

This operation does not return a new solution but always modifies the given one in place. Notice that by default the aligning operation is performed when add is called.

Any solutions can be merged which will result in a nes solution:

```
>>> solution_a = Solution.dissolve(1, water, [CN], [0.002])
>>> solution_b = Solution.dissolve(1, water, [MS, MAP], [0.001, 0.001])
>>> solution_a.merge(solution_b)
Composition
                              Amount in kg Amount in g
Calcium nitrate tetrahydrate
                                                         2
                                      0.002
Magnesium sulfate heptahydrate
                                      0.001
                                                         1
Monoammonium phosphate
                                      0.001
                                                         1
Pure water
                                       1.996
                                                      1996
Total:
                                                      2000
```

```
Composition: Resulting composition
Nutrient
               Ratio Amount mg/kg
           0.0001186
N (NO3-)
                             118.6
N (NH4+)
           6.0885e-05
                            60.885
P
           0.00013464
                           134.64
                              49.3
Mg
           4.93e-05
Ca
           0.0001697
                             169.7
S
           6.505e-05
                              65.05
```

2.3 Correcting solutions

2.3.1 Adjusting the pH level

It is a common task to adjust the pH level of an existing nutrient solution by adding some accid (typically either nitric acid or phosphoric acid) or some base (typically potassium hydroxide). For this purpose one needs to weight the pH corrector and add it to the solution:

```
>>> solution_ms = Solution.dissolve(1, water, [MS], [0.002])
>>> KOH_94 = 0.94 * Composition.from_dict(
      {'Potassium hydroxide': {'K': 0.69687}}
. . .
      )
>>> solution_ms.add(KOH_94, 0.000120)
>>> solution_ms
Composition
                          Amount in kg Amount in g
_____
                                0.002
Magnesium sulfate heptahydrate
0.94 * (Potassium hydroxide)
                                0.00012
                                               0.12
Pure water
                                0.99788
                                            997.88
Total:
                                1
                                            1000
Composition: Resulting composition
Nutrient
              Ratio
                    Amount mg/kg
         _____
         7.86069e-05
                       78.6069
                        197.2
Мg
         0.0001972
S
         0.0002602
                         260.2
```

OPTIMIZING SOLUTIONS

3.1 Using optimizer

Hydrosolver includes mathematical optimization for solutions based on projected gradient descent method on a simplex. The following example utilizes a high-level enduser interface hydrosolver.optimization.optimize which takes over the formulation of the optimization problem with the standard weighet least squares objective functional and runs the optimization process with default parameters.

```
>>> from hydrosolver.solution import Solution
>>> from hydrosolver.composition import Composition
>>> from hydrosolver.optimization import optimize
>>> from hydrosolver.database import pure, compo, chelates, howard_resh
```

```
>>> composition_target = howard_resh['Resh composition for peppers']
```

```
>>> compositions = [
        compo['Hakaphos Basis 2'],
        pure['Calcium-ammonium nitrate decahydrate'],
        pure['Magnesium sulfate heptahydrate'],
        chelates['Fe-EDTA 13.3%'],
        chelates['Zn-EDTA 15%'],
        pure['Boric acid'],
. . .
...]
>>> solution_init = Solution.dissolve(
        Composition(name='RO water'),
. . .
        compositions,
. . .
...)
>>> solution_optimal = optimize(solution_init, composition_target)
>>> solution_optimal
Composition
                                         Amount in kg
                                                          Amount in g
                                                           153.874
Hakaphos Basis 2
                                          0.153874
Calcium-ammonium nitrate decahydrate
                                          0.148834
                                                           148.834
Magnesium sulfate heptahydrate
                                          0.0579563
                                                            57.9563
Fe-EDTA 13.3%
                                          0.00390307
                                                             3.90307
Zn-EDTA 15%
                                          0.000175686
                                                             0.175686
Boric acid
                                          0.000194851
                                                             0.194851
RO water
                                        149.635
                                                        149635
Total:
                                        150
                                                        150000
```

Composition: Resulting composition				
Nutrient	Ratio	Amount mg/kg		
N (NO3-)	0.000172246	172.246		
N (NH4+)	1.28593e- 0 5	12.8593		
P	4.02928e-05	40.2928		
K	0.000340636	340.636		
Mg	6.28412e-05	62.8412		
Ca	0.000184008	184.008		
S	5.02674e-05	50.2674		
Fe	4.99947e-06	4.99947		
Zn	3.2956e-07	0.32956		
В	3.29649e-07	0.329649		
Mn	5.12913e-07	0.512913		
Cu	2.05165e-07	0.205165		
Мо	1.02583e-08	0.0102583		